

USER GUIDE EOBD-FACILE MACOS VERSION

www.outilsobdfacile.com

Outils OBD Facile Tous droits réservés

CONTENTS

1	Ovei	rview	2
2	Prer	equise before starting EOBD-Facile	3
3	Con	nect USB Interface	3
4	Con	nect Bluetooth Interface	3
5	Con	nect WiFi Interface	3
6	Softv	ware settings	4
7	Vehi	cle settings	4
8	Adva	anced settings	
9	Conf	figuring the diagnostic report	5
10	The	"Diagnostic" tab	6
11	Save	/Review a diagnostic	7
12	Gene	erate diagnostic report	8
13	The	"Freeze frames" tab	9
14	"Sen	sors" tab	10
15	The	"Oxygen sensors" tab	11
16	"Mo	nitored system results" tab	12
17	"Vel	nicle Info" tab	13
18		minal" tab	14
19	The	"Graph and recording" window	15
19	9.1	Display values	
19	9.2	Display/record options	15
19	9.3	Replay a recording	16
19	9.4	Smart triggers	17
19	9.5	Calculations	17
19	9.6	Exporting recording to a spreadsheet	17
20	The	"Dashboard" window	18
21	The	"CAN bus analyser" window	19
2.	1.1	Display frames	
2.	1.2	Filtering the CAN bus	19
22		Decoder	
23	Erro	or messages:	
	<i>3.1</i>	Errors from the ELM interface	20
		uent problems, tips	
	4.1	Connection problems with the vehicle	20
24	4.2	Connection problems with the vehicle (Battery at 0.0V)	20
_	4.3	Fault deletion problem	
	4.4	Renault "hands-free" kit	
	4.5	Renault bi-fuel Gasoline / GPL	21
	4.6	Engine start "hands-free" (ADML) Peugeot/Citroen	21
	4.7	Volkswagen, keyless option	
24	4.8	Repair tutorials	21
24	4.9	Contacts	21

1 Overview

The software is comprised of several principal zones described below

Menus: contain the various main menus for the software:

- EOBD-Facile containing the menu Preferences and About
- Diagnostic to find your OBD2 plug and select the calculator on which to run the diagnostics.
- Additional functions containing shortcuts to the graphic functions, dashboard and CAN bus analyser
- Register to create an activation file to activate the software
- ➤ Help to run this help file

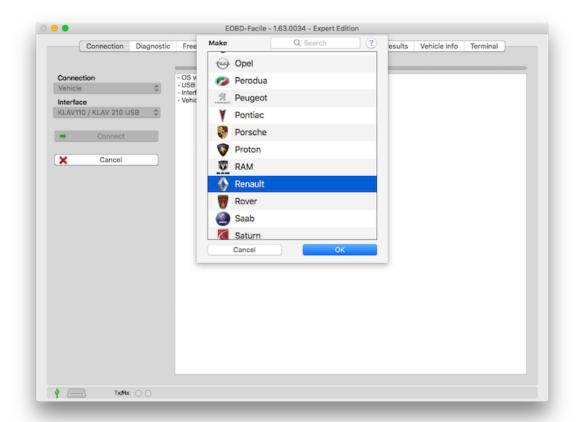
<u>Tabs:</u> represent the various tabs in the main window. The functions in these tabs are described in more detail in the following pages.

<u>Status bar:</u> It displays the current status of the software. Displayed from left to right are

- The status of the connection with the interface
- > The status of the connection with the vehicle
- The interface communication (Tx/Rx) status
- The make of vehicle selected
- > The ECU currently being used

Vehicle make selection window

In order to obtain as much data as possible on connection, the software will ask you to enter the make of vehicle on which you are doing a diagnosis.


This choice will display the corresponding description of the manufacturer's specific DTCs.

If the make you want is not available, select EOBD / OBD2 (Other / Generic)

<u>Special cases:</u> If your make does not appear but your vehicle is fitted with the engine of one of the makes listed, select this make.

ECU to diagnose window

When connecting to the vehicle, software will prompt to select ECU to diagnose. Following your vehicle options and the fault you want to read, please select the ECU you wish connect. This window allow to the software to connect faster. For example, uncheck the TCM if your vehicle have a manual gear box.

2 Prerequise before starting EOBD-Facile

Plug interface to the vehicule.

Switch on the vehicle's ignition (the engine indicator should be lit)

Start the connection using the Connection button on the application

EOBD-Facile will scan all the computers in your vehicle, and all the functions supported by them. The result of this scan will be displayed in the text area of the connection tab.

Important: If you are having problems connecting to your vehicle, read the information in the text area. Indications are displayed to help you diagnose the problem. Note: Connection problems are never due to the fact that your software version is not registered!

When the message "The interface is connected and initialised" appears, the software is ready to communicate with the vehicle

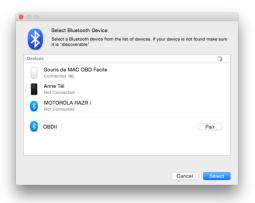
Note 1: The status bar at the bottom of the main window permanently displays the connection status.

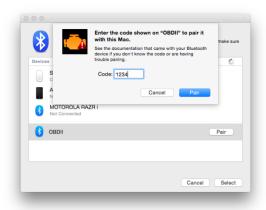
<u>Note 2</u>: If you are having problems connecting, consult the chapter **Problems connecting to the vehicle**.

3 Connect USB Interface

Select inside the list of interface: ELM327 USB.

A window will appears with a list of devices available on your machine. Please select the device corresponding to the ELM327 driver and choose the baudrate (generaly 38400).


<u>Caution:</u> If the device is not displayed inside the list, it means that the USB driver has not be intalled. You can download drivers for ELM327 on your website: https://www.outilsobdfacile.com


4 Connect Bluetooth Interface

Select inside the list of interface: **ELM327 Bluetooth**.

The following window will appears to configure the Bluetooth device. If you are using the Bluetooth device for the first time, you will have to pair it. Next times, the pairing code will not be asked again..

Click on « Pair », if you fail to pair, you may should change the option and tap the PIN code: 1234. When you are paired to the device, select it and click on the select button at the bottom right of the window.

5 Connect WiFi Interface

Select inside the list of interface: ELM327 WiFi.

Go inside the wireless network manager and select the network created by the interface. Usually its name is WiFiOBD.

If a password is required, try with: 12345678

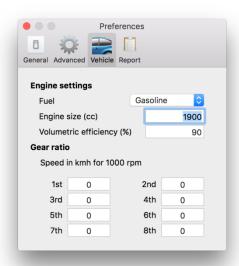
When you are connected to the WiFiOBD network, go back inside the software and start the connexion by clicking on connect button. EOBD-Facile will use for the WiFi connection settings present in the « General preference pane".

6 Software settings

Configuring the initialisation time:

The ELM requires time to initialise the connection with the vehicle. By default, the waiting time is set to 14 seconds. If you are having connection problems, it may be helpful to increase this parameter.

Configuring the vehicle protocol:


The ELM can automatically detect your vehicle's protocol. Unless you are an expert, leave the option on automatic. It may happen that protocol auto-detection does not work for several reasons. Most often it is because there are several valid protocols for your vehicle. In this case, you can force the ELM to connect with the desired protocol.

Configuring regional preference:

- Units: metric to use the international system of units (meter, grams, °C, etc.) or imperial (miles, pound, °F, etc.).
- > Fuel price: Specify the price of the fuel (used by the dashboard function) and the currency unit.

7 Vehicle settings

La fonction de tableau de bord est vraiment performante une fois que les paramètres du véhicule sont insérés dans le logiciel. Cf la fenêtre ci-dessous :

The following settings should be entered:

- > Fuel: select the fuel type for the vehicle
- Engine size: in cc (note: a 1.6 engine corresponds to 1600 cc)
- Volumetric efficiency: intake efficiency (used to calculate the engine consumption). A standard vehicle is 80% efficient. If you note too high a difference between the vehicle's consumption and that displayed by the software, change this setting.
- Gear ratio: enter the speeds at 1000 rpm for each gear. To get this data, consult the technical data sheet for your vehicle or use the software's graphic window to determine them.

8 Advanced settings

- Read freeze frames with defaults: This function will enable you to see the engine status when faults appear directly from the diagnostic tab. This function will slow down reading of fault codes.
- Always reload the chart data when the record is over: will switch automatically the chart window into "review mode", when you stop the record.
- Ask for saving diagnostic before clearing DTC: This function will prevent you to lose diagnostic data when you want to perform clearing of DTC, a popup will ask you to save them
- Default data path for save data: if you wish to save data created with the software anywhere else thant the desktop, please change this parameter.
- Temporary files are created during the software usage. You can delete it at any time with the trash button.

9 Configuring the diagnostic report

The report generation can be customized with our own contact information if you have a repair shop. You can configure:

- The name of the company
- ➤ The logo (png, jpg or bmp format)
- Color of the report title
- Postal address and phone number

10 The "Diagnostic" tab

This tab is used to diagnose the cause of the indicator light. The function is available in the unregistered version of the software.

Click \boldsymbol{Read} to show the currently selected ECU and update the window with:

- Confirmed fault codes
- > The current status of the indicator
- > The distance and time since the indicator has been lit (not available for all vehicles)

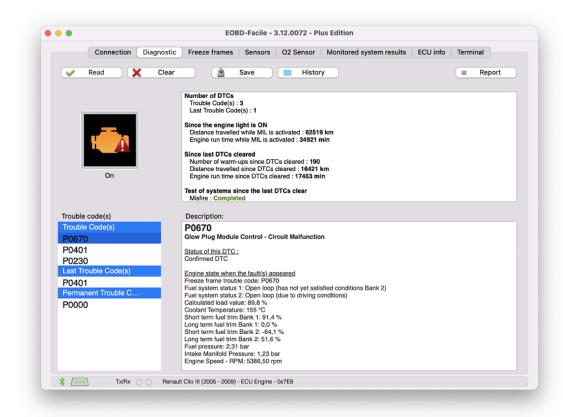
<u>Tip:</u> The list of faults will be displayed according to the chronological order. Please focus on the first fault, other faults may be the consequence of the first one.

Description of fault codes: Click on the default code to update the associated description. The software uses the vehicle make selected on connection to show the exact description.

Engine status when the fault appeared (Mode 2) completes the diagnostic data (only on the full version). These data show the conditions when the fault was detected (engine hot, idling, at full load, etc.)

Engine status when the fault appeared (Mode 2) completes the diagnostic data (only on the full version). These data show the conditions when the fault was detected (engine hot, idling, at full load, etc.)

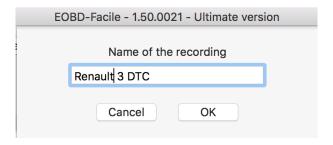
Clear resets all data concerning the fault(s) stored in the ECU to zero.

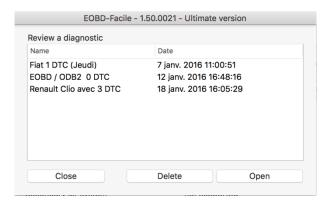

Very important:

- > Only use this function to find the cause of the failure and after having repaired it. A fault may sometimes reappear after several hundreds of kilometres.
- > This operation will cancel all the fault codes and also the whole internal diagnostic history of the code(s) present:
- reset monitor tests, mileage when the fault appeared, etc.

After clearing, a message will confirm whether or not the operation was successful.

Last Trouble Code: Faults detected on the vehicle need several driving cycles before the indicator lights. During this confirmation phase, the faults are recorded as last trouble code.

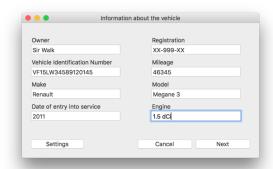

Permanent Trouble Code: Permanent faults cannot be deleted. They are very rarely used.

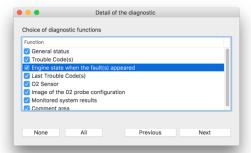


11 Save/Review a diagnostic

It is possible to save the data displayed inside the diagnostic sheet. Clic on ${\tt w}$ Save ${\tt w}$ button, a window will appear to give a name to the record

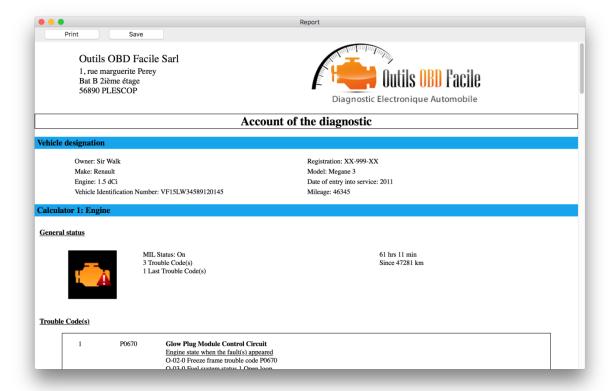
To reload the data saved previoulsy, clic on « History » button, the following window will be displayed to manage your records. You can easily reload, delete, or rename your records.





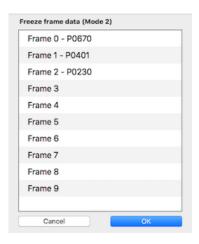
12 Generate diagnostic report

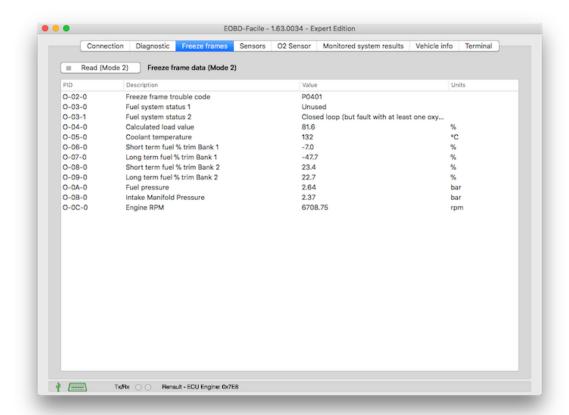
To generate a report, clic on « Report » button on the diagnostic sheet. A wizard composed by 3 steps will ask you the following information to complete the report :


- 1. Vehicle informations
- 2. ECU to include to the report
- 3. Diagnostic's data to include to the report

The report generated can be saved inside as a pdf document or can be printed direclty from EOBD-Facile

<u>Remember:</u> Report head can be customized inside the software settings. Vous can displayed your own company name, logo and contact information.




13 The "Freeze frames" tab

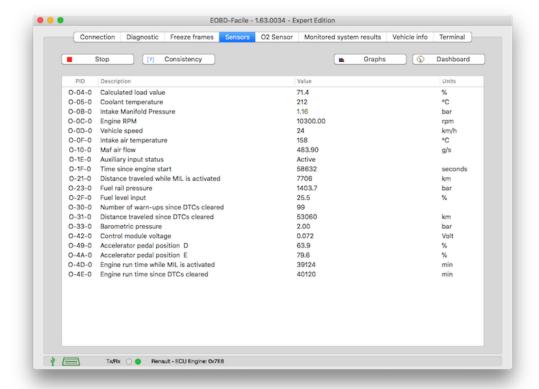
 $Read\ (Mode\ 2)$ is used to display the engine status when the fault appeared.

First of all, the software will scan the ECU to know the number of freeze frame available and its fault code associated. For each fault code, a raw of data is available. Select the frame/fault you wish read (for example Frame 1 -P0401)

The software will display a table with the values of the associated engine sensors.

14 "Sensors" tab

Read (Mode 1): allow to read to start the reading of current value of the sensors.


This tab is used to read the actual value of the sensors. The list of sensors displayed is automatic depending on the vehicle configuration.

You can also view the vehicle sensors using the Graph and log function. These functions are described in the following chapters.

Consistency: This function allows to check if the vehicle sensor's values are inside a "plausible" range. This function should be used with the engine started

Software will scan all the sensors to report sensors which can be damaged

For example: A temperature sensor reporting -40°C is due to a short circuit to the ground of the sensor itself or a default of the harness.

15 The "Oxygen sensors" tab

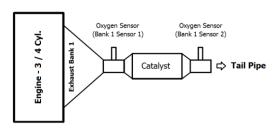
The "oxygen sensors" function is only available in the full version of the software.

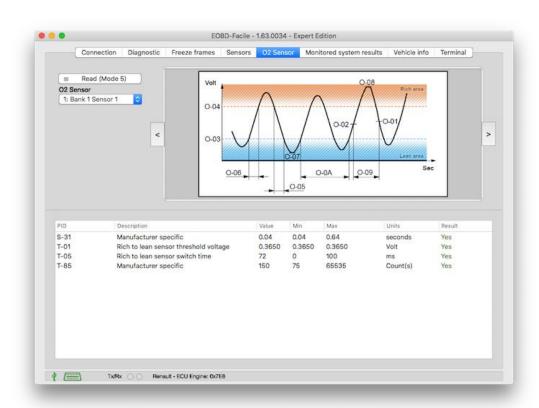
Oxygen sensors are used in petrol vehicles to control the injection. As a result, this function is only active on petrol vehicles.

<u>Note:</u> On some petrol vehicles, the diagnostic for oxygen probes is only accessible via the "Results of monitored systems" tab.

Click Read to display the auto-diagnostic values for these sensors. The ECU monitors measurements taken by these sensors permanently. The measurement must remain within the tolerances indicated by the software minimum and maximum. A sensor showing values outside this range is probably faulty.

Depending on the configuration of your vehicle (number of cylinders, exhaust), several sensors are available. Select the sensor of your choice using the drop-down menu.


Oxygen sensors are named as follows:

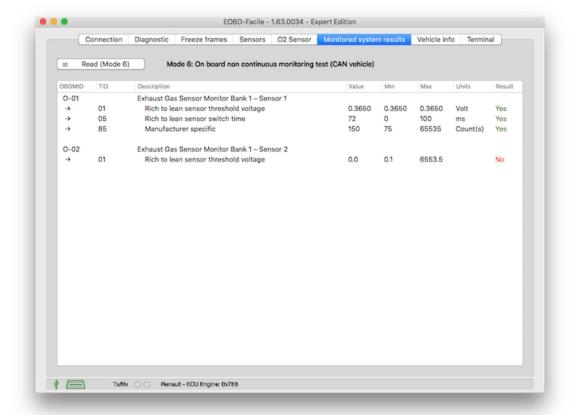

Bank X Sensor Y

X represents the bank number. Bank 1 corresponds to the connection to cylinder no.1 on the vehicle. Most vehicles (3, 4 or 5 cylinders) only have one bank. On V6, V8, V10 engines, there are usually 2 banks (or more). Sometimes, several ECUs may be used on sports vehicles with more than 8 cylinders. In this case, switch from one ECU to the other using the menu "ECUs" to check all the oxygen sensors.

Y represents the number of the sensor. Sensor no. 1 is the one closest to the cylinder (further upstream). Numbering continues from there. Sensor no. 2 is the one after the catalytic converter.

Below is an example of common configuration for vehicles with 3 or 4 cylinders:

16 "Monitored system results" tab


The function is only available in the full version of the software.

The ECU permanently monitors the various systems regarding the function it manages (engine, transmission, etc.). These results are available in this tab corresponding to mode 6 on EOBD.

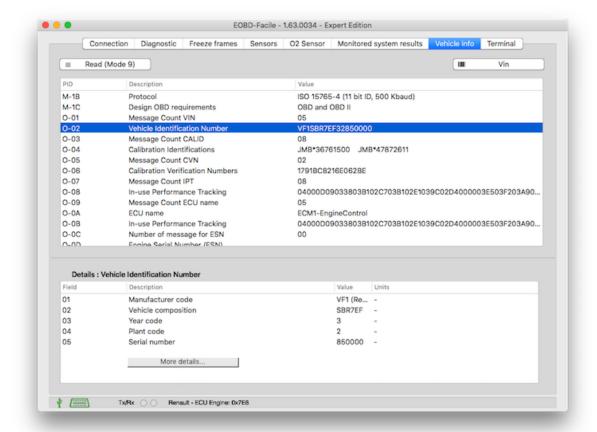
Depending on the configuration of your vehicle, you will have access to data concerning: EGR, particulate filter, oxygen sensors, fuel management systems (canister, common rail, etc.).

This function is used to check that each system is operating within its nominal range. The "Result" column will display "No" in red if this is not the case.

<u>Note:</u> depending on the make of vehicle, the descriptions of systems and measurements may differ. The software may not know the description of some measurements. In this case, "Manufacturer specific ID Test" will be displayed.

17 "Vehicle Info" tab

The function is only available in the full version of the software.


This tab is divided into 2 zones. The upper zone displays the general data for the various PIDs. Click on one of them to update the lower zone with the details of the selected PID.

The VIN (Vehicle Identification Number) allows the software to "recognise" the vehicle characteristics.

The IPTs (Performance monitoring during use) are also available in this tab.

In the example below, the details are shown using the VIN of a Repault vehicle

18 "Terminal" tab

The function is only available in the full version of the software.

It is used to send custom commands to the interface for the ELM module (AT command) or to make specific OBD requests to the vehicle.

Example: Read the ELM version.


- ➤ Enter ATI and click Send
 ➤ The ELM will display its "name".

For more details on the available commands, see the technical data sheet for the ELM327 interface.

Scripts:

This function is used to save and replay commands for the ELM. File syntax is as follows:

- ➤ Lines starting with the character # are comments displays on execution.
- > [TX] followed by a text is used to send an order
- > [WAIT] followed by a numerical value is used to add time in milliseconds.
- > [CLS]: is used to clear the screen.
- > [SAVE]: is used to save the result in a file.

19 The "Graph and recording" window

This window is run either from the shortcut on the sensor tab, or from the "Special" menu. It is used to display the sensor values in the form of a graph and to record them in a file for later use.

19.1 <u>Display values</u>

In the "Data" tab, select the parameters you want to display, for each bank, using the drop down menus. Run continuous reading by clicking on "Start". During reading, it is possible to show or hide a curve by un/checking "Displayed".

You can also pause the recording at any time by pressing the button "Start/resume".

 $\underline{\text{Tip:}}$ You can show/hide the sensor selection area using the grey arrow in the top right corner of the window. This is useful is you are working on a small screen (e.g. netbook)

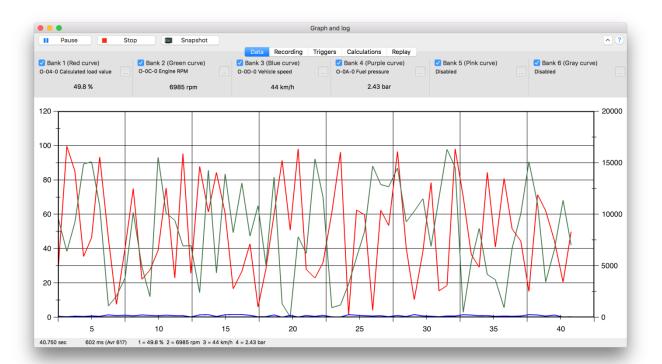
At the bottom of the window, a status bar shows real-time information from left to right:

- > The length of the recording in seconds
- The refresh frequency of the values in milliseconds (and the average in brackets)
- The current value on bank 1
- The current value on bank 2
- The current value on bank 3
- > The current value on bank 4

<u>Stop the recording</u>: Click Stop to stop recording. A summary is displayed with, for each active bank, some statistics. To save the recording, click Save as. The data are saved in .csv format with commas as separators. This type of file can be opened in Excel.

Snapshot: save the current image of the graph in an image file.

<u>Note</u>: Each recording is saved by default in the file *DernierEnregistrement.txt* in the software's data directory. Any new recording will replace this file.


19.2 <u>Display/record options</u>

In the "Recording" tab, select the display you require.

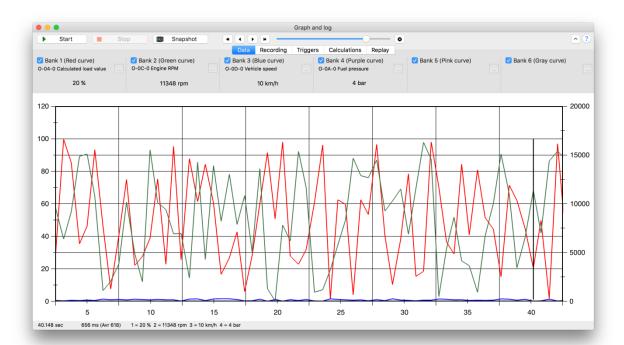
- Scroll time between 30 seconds and 10 minutes.
- Graph background colour: black or white
- Display or hide the graph grid.

Legend:

Vertical axis scale is selected automatically by the software. You may use your own scale by setting minimum and maximun values for bank 1 and 2.

19.3 Replay a recording

The function is only available in the full version of the software.


This function is used to reload a previous recording saved in the software. The data can be analysed and replayed in the data graph window.

In the "Replay" tab, open the file you want to replay. The window will change aspect. A horizontal bar with buttons will appear with a cursor used to navigate through the recording. A black line shows your current position.

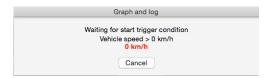
When you have finished the replay, click Close to return to normal mode (recording).

The "Replay" tab contains data in the open file and the statistics on the data in the file.

19.4 Smart triggers

The function is only available in the full version of the software.

This function is used to start reading and stop recording in graphic mode automatically and according to a condition. This is useful for performance measurements such as standing starts for a 0 to 100 kph.


The software includes 4 preset triggers:

- 0-100 kph
- 80-120 kph
- 400m standing start
- 1000m standing start

Other triggers can be set by changing the recording start and stop conditions. For example, standing start tests up to 130 kph are possible by changing the stop conditions with the value 130.

<u>Important:</u> The settings used to trigger the recording (engine speed, vehicle speed, etc.), must also be present in the settings to be recorded in order to work.

Once the trigger is configured, click "Start". The following window will appear and the recording will start itself when the condition is fulfilled.

19.5 <u>Calculations</u>

This function allows to creat your own conversion factor or to made customized calculations on values displayed by the chart.

On the below example, vehicle speed and engine rpm are used to calculate gear ratio (theorical results)

Notice: to be able to select conversion parameters, you shall first select the parameters used for the display inside the first sheet (Data).

19.6 Exporting recording to a spreadsheet

The function is only available in the full version of the software.

Recordings can be exported using the graph and recording function. The data are saved in a .csv file with commas as separators. Each line in the file corresponds to a point of the recording and each line contains several fields. The first filed corresponds to the recording time (in seconds), and then for each active bank, a field corresponding to the sensor PID, followed by a field indicating its value.

Example:

Time; Engine speed; Vehicle speed Time; O-0C-0; O-0D-0 sec; rpm; kph 0,068; 5758,000; 113,000 0,131; 5758,000; 113,000 0,198; 5801,500; 113,000 0,256; 5801,500; 114,000

At t = 0.068: Engine speed = 5758 rpm Vehicle speed = 113 kph

At t = 0.131: Engine speed = 5758 rpm Vehicle speed = 113 kph

At t = 0.198: Engine speed = 5801.5 rpm Vehicle speed = 113 kph

At t = 0.256: Engine speed = 5801.5 rpm Vehicle speed = 114 kph

A sample file is available in the EOBD-Facile installation directory: Exemple_DA.xls

The first tab in the Excel file (*User instructions*) explains in detail the procedure for importing a recording file.

The second tab shows the data in raw table form. In the sample, a standing start simulation where the 4 banks were configured to measure speed, engine speed, flow and boost pressure (turbocharged engine).

The third tab shows the same data in graph form.

Using spreadsheet functions, it is possible to develop conversion formula or easily extract statistics on your measurements.

20 The "Dashboard" window

This function is accessible from the *Special / Dashboard* menu enabling you to make consumption measurements for petrol and LPG vehicles only.

In order to obtain relevant data, remember to enter the software options in the vehicle tab with the cubic capacity, the fuel type and the gearbox ratios.

 $\underline{\text{Important:}} \ For \ consumption \ to \ be \ calculated, \ your \ vehicle \ must be able to measure one of the 2 following values:$

- ➤ Intake manifold pressure (PID 0x0B)
- Intake air flow (PID 0x10)

Several parameters are available in the dashboard electronic display (for petrol/LPG vehicles)

- Vehicle speed
- > Engine speed
- The engaged gear (N for neutral)
- Distance covered (Odo.)
- Quantity of air taken in (Qair)
- Current consumption (in L/100km)
- Current consumption (in L/hr)
- Engine load (in %)

Journey statistics:

During the whole journey, the software will record and calculate statistics to analyse the driving style and vehicle consumption. The image below shows the various parameters calculated.

The journey data can be saved in a *.csv file for later analysis with another software (a spreadsheet for example). It is also possible to save the data below in the form of an .html file (for printing for example).

21 The "CAN bus analyser" window

This function is accessible from the Special / CAN bus analyser menu enabling you to spy on a CAN bus via an ELM interface.

Important: If your vehicle does not operate in CAN bus, force the interface in one of the CAN protocols and start the connection. The connection will fail but you will still be able to use the CAN bus analyser function.

21.1 Display frames

The frames can be displayed in two ways:

- Time: the frames are displayed in chronological order
- By ID: in this case, frames with the same ID are always displayed on the same line. Yellow highlighting shows the changes.

The status bar (bottom of the window) contains from left to right:

- ➤ The 11bits or 29 bits CAN protocol
- The Cnt statistics showing the number of frames received and Fps showing the number of frames received per second.
- > The status of the CAN filters.

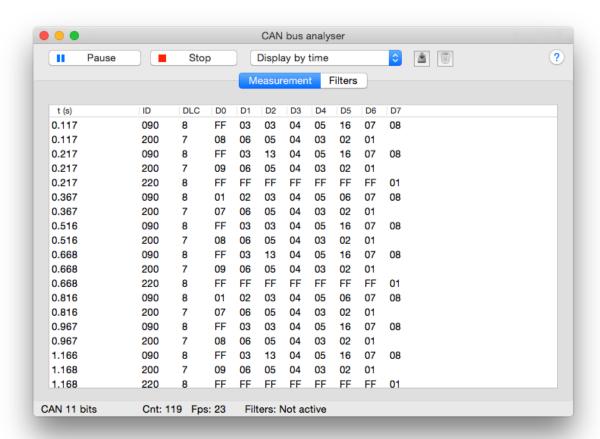
Reading can be paused at any time.

With the ultimate version it is also possible to display a contextual menu by right clicking on the frame display area to:

- Save the read result in a file
- Clear the area

21.2 Filtering the CAN bus

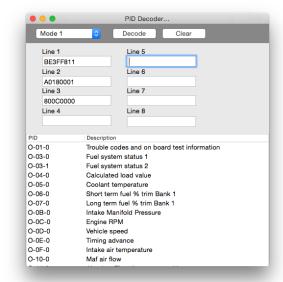
Depending on the CAN buses spied on, the quantity of frames displayed can rapidly grow and saturate the ELM interface causing a "Buffer overflow!" error. To solve this problem, either increase the communication speed with the ELM or define a filter to only display the frames that interest you.


The principle of filtering is to choose CAN identifiers that you want to display. 2 types of filtering are possible:

Software filtering: this is display filtering in EOBD-Facile. It has the advantage of being easy to configure but does not solve ELM buffer overflow problems. With this type of filtering, the ELM will continue to send all frame continuously.

Hardware filtering: this is a filter than can be set within the ELM. Thus it avoids saturating the link between the ELM and EOBD-Facile. Click on Update to send the new filtering parameters to the interface. A Test button enables you to test the IDs you want to exclude/accept in the configured filter.

Filtre (0x2FF)	0	1	0	1	1	1	1	1	1	1	1
Masque (0x700)	1	1	1	0	0	0	0	0	0	0	0
Identifieur accepté	0	1	0	х	Х	х	х	х	х	х	Х


Tous les identifieurs de 0x200 à 0x2FF seront accepté

22 PID Decoder

This function accessible from the *File / PID decoder* menu, is used to interpret the data in the "vehicle list" tables on our website. Copy the lines of the table and select the mode, then click Decode to get a list of supported PIDs.

23 Error messages:

23.1 Errors from the ELM interface

ELM error detected: Buffer overflow! The flow of data from the OBD communication is greater than that of communication with the PC. This error is frequent with vehicles operating in CAN bus. Reconfigure the communication speed to solve this error (See chapter Graphs / Improving data recovery speed).

ELM error detected: Bus busy! The communication bus is busy and the interface cannot initialise communication.

ELM error detected: Bus error! A corrupted signal has been detected. Typically when the vehicle is started while communication is in progress.

ELM error detected: data error! The data read are incorrect.

ELM error detected: Return signal error! The return signal is inconsistent. The signal generated on the bus does not correspond with what the ELM is attempting to send. Mostly, this is a material wiring issue.

ELM error detected: Reception signal error! Data received are not valid, may be due to incorrect configuration of the communication speed on the CAN bus.

Interface reset detected! Reconnect the software to continue! The software has detected restart of the interface, usually due to loss of power. To continue to use the software, reconnect.

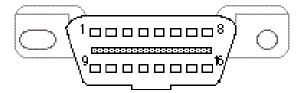
For more information about these errors, please consult the technical documentation on your ELM circuit.

24 Frequent problems, tips

24.1 Connection problems with the vehicle

List of the most common causes of connection problems:

- > The USB driver for the interface is not installed
- > The vehicle is not compatible with the OBD (Only vehicles since 2001 for petrol and 2003 for diesel are compatible)
- Battery voltage is 0.0V
- > The vehicle ignition was not switched on for the connection
- > The communication parameters are incorrect
- In 90% of cases, we suggest you keep the option autodetection of the vehicle protocol


If this does not work, try to force the protocol in ISO 14230 (5 baud init). ELM type interfaces sometimes encounter auto-detection problems for this protocol

24.2 <u>Connection problems with the vehicle (Battery at 0.0V)</u>

During the connection to the vehicle, EOBD-Facile will read the battery voltage on the OBD plug. This voltage shall be a value between 10 Volt and 14 Volt in order to be able to diagnose the vehicle

If the voltage is stucked at 0.0V. It may possible that the fuse or the harness of the OBD plug is damaged. Please check manually the voltage with the help of a multimeter between PIN 16 and 4 and also between PIN16 and 5 of the connector.

Pin 4 : Chassis ground Pin 5 : Signal ground Pin 16 : + VBatt

24.3 Fault deletion problem

When you press delete, the software displays an error message "Incorrect conditions". For safety reasons, faults cannot be deleted when the engine is running. Switch off the engine and try again.

24.4 Renault "hands-free" kit

Vehicles fitted with this option can be connected using our software. Follow the procedure below to run diagnostics on the vehicle:

- Close the door.
- > Put the car in first gear.
- > Do not press the brake or the clutch.
- ➤ Press the START/STOP button for about 15 seconds.
- > Contact will be made and remain active for 30 minutes.

24.5 Renault bi-fuel Gasoline / GPL

Vehicles running on Gasoline / LPG bi-fueling having faults on the LPG system requires activating the LPG fueling to erase faults related to LPG.

In order to clear faults, you must activate the LPG mode without starting the vehicle engine.

24.6 Engine start "hands-free" (ADML) Peugeot/Citroen

Vehicles fitted with this option shall be connected with the ignition ON without starting the engine to be able to clear the faults. Please push the "start" button without pressing any pedals. Ignition will be turn on and the engine will not start.

24.7 <u>Volkswagen, keyless option</u>

Vehicles with this option must be put into diagnostic mode by following the following procedure::

- Connect your diagnostic tool (klavkarr / ELM)
- > Put the key in its housing
- Press the "Start Stop Engine" button for at least 5 seconds
- > Start the connection to the vehicle from the EOBD-Facile application

24.8 Repair tutorials

On your website you can found repair sample for the following

- ➤ P0110 : Air intake temperature sensor
- > P0380 / P0670 : Glow plugs
- ➤ P0301 / P0302 / P0303 / P0304 : Misfires
- ➤ P0420 : Catalyst efficiency

24.9 Contacts

If you have any questions or suggestions about this help file, contact us at the following address:

contact@outilsobdfacile.fr